FISH PASSAGE RESEARCH IN THE MIDDLE FORK WILLAMETTE SUB-BASIN

Rachel Neuenhoff U.S. Army Corps of Engineers Portland, OR

Willamette Fisheries Science Review Corvallis, OR March 13, 2019

MIDDLE FORK WILLAMETTE

Goal: Establish a sustainable spring Chinook population above dams

US Army Corps of Engineers ® Portland District

Cree

Hills Creek Dam (upstream) CHALLENGES: HIGH CHINOOK PRE-SPAWN MORTALITY (PSM)

- PSM >75% in recent years a major lifecycle bottleneck in some years
- Likely causative factors: temperature, water quality, hatchery fish interactions, trap and haul issues

Lookout Point Dam

owell.

State Park

Dexter Dam -

CHALLENGES: HIGH CHINOOK PRE-SPAWN MORTALITY

DEXTER DAM

Hatchery/Adult Collection Facility to take fish to hatchery Adult Collection Adult Sorting; load on to truck for transport

- Concept: Upgrade hatchery fish facilities to use as
 "trap-and-haul" fish passage for adult fish
- Use hatchery spring Chinook to evaluate potential for reintroduction in upstream habitat

Hills Creek Dam (upstream)

CHALLENGES: JUVENILE PASSAGE CONDITIONS

- Juveniles must migrate through >20 linear miles of reservoir and 2-3 dams
- Most Chinook enter reservoir as fry and remain upstream of dam until June

Recreation S

Good

Lowell

State Park

Dexter Dam-

Lowe

Lookout Point Dam

CHALLENGES: JUVENILE PASSAGE CONDITIONS

Two consecutive reservoirs and dams to pass

Predators

High dams with fluctuating water elevations

Multiple passage routes

- Deep intakes (very little surface spill)
- High mortality

- Continued study of passage options and feasibility
- Middle Fork Research Plan, 2017
 Key questions
 - I. Can survival across life stages be sufficiently improved to support a sustainable spring Chinook Salmon population above Lookout Point Dam?
 - II. To support a sustainable population, which downstream fish passage strategy is likely best?
 - at-dam structural passage
 - head-of-reservoir or in-tributary collection and bypass
 - alternative project operations
 - combination

MIDDLE FORK SUB-BASIN FISH PASSAGE RM&E

Information needs	Example References		
Adult Chinook salmon migration	Jepson et al. 2015; Keefer et al. 2015;		
	Naughton et al. 2015		
Chinook salmon pre-spawn mortality	Bowerman et al. 2018; Keefer et al.		
	2010; Sharpe et al. 2013-2015, 2017		
Chinook salmon spawning	Sharpe et al. 2013-2015; 2017		
Juvenile Chinook salmon migration and	Romer et al. 2012-2017; Monzyk et al.		
reservoir use	2011-2015		
Reservoir ecology and predation on	Murphy et al.(in review)		
juvenile Chinook salmon	Brandt et al. 2016		
Survival of juvenile Chinook in reservoir	Kock et al. (in review)		
Juvenile dam passage	Keefer et al. 2012; AECOM 2012;		
-Head of Reservoir Bypass	Johnson et al. 2016, Hanson et al.		
-Reservoir and dam passage	2017; Fischer et al. 2018;		
Lifecycle modeling	Zabel et al. 2015		
Alternatives evaluations	Corps 2015; Corps 2012		

MIDDLE FORK SUB-BASIN FISH PASSAGE RM&E

Adult Chinook salmon migration	Jepson et al. 2015; Keefer et al. 2015;		
	Naughton et al. 2015		
Chinook salmon pre-spawn mortality	Bowerman et al. 2018; Keefer et al.		
	2010; Sharpe et al. 2013-2015, 2017		
Chinook salmon spawning	Sharpe et al. 2013-2015; 2017		
Juvenile Chinook salmon migration and	Romer et al. 2012-2017; Monzyk et al.		
reservoir use	2011-2015		
Reservoir ecology and predation on	Murphy et al.(in review)		
juvenile Chinook salmon	Brandt et al. 2016		
Survival of juvenile Chinook in reservoir	Kock et al. (in review)		
Juvenile dam passage	Keefer et al. 2012; AECOM 2012;		
-Head of Reservoir Bypass	Johnson et al. 2016, Hanson et al.		
-Reservoir and dam passage	2017; Fischer et al. 2018;		
Lifecycle modeling	Zabel et al. 2015		
Alternatives evaluations	Corps 2015; Corps 2012		

Framework needed to evaluate combination of actions addressing PSM and downstream passage.....

Structured Decision Making for passage alternatives in the Middle Fork

Framework needed to evaluate combination of actions addressing PSM and downstream passage.....

MIDDLE FORK SUB-BASIN RESEARCH PLANS – TOY EXAMPLE

Framework needed to evaluate combination of actions addressing PSM and downstream passage.....

Framework needed to evaluate combination of actions addressing PSM and downstream passage.....

Alternatives evaluations

Framework needed to evaluate combination of actions addressing PSM and downstream passage.....

	Examples			
Adult Chinook salmon migration	Jepson et al. 2015; Keefer et al. 2015; Naughton et al. 2015		DECISION SE	T
Chinook salmon pre-spawn mortality	Bowerman et al. 2018; Keefer et al. 2010; Sharpe et al. 2013-2015, 2017		HYPOTHESIS eg annual juvenile reservoir survival is:	Probability/certainty:
Chinook salmon spawning	Sharpe et al. 2013-2015; 2017		H0: 0.00	0.05
luvonilo Chinook colmon migration and	Romer et al. 2012 2017: Monzyk et al.		H1: 0.05	0.1
reservoir use	2011-2015	/	H2: 0.25	0.35
Reservoir ecology and predation on juvenile Chinook salmon	Murphy et al.(in review) Brandt et al. 2016		H3: 0.78	0.3
Survival of juvenile Chinook in reservoir	Kock et al. (in review)		UTILITY	
Juvenile dam passage -Head of Reservoir Bypass -Reservoir and dam passage	Keefer et al. 2012; AECOM 2012; Johnson et al. 2016, Hanson et al. 2017; Fischer et al. 2018;			
Lifecycle modeling	Zabel et al. 2015			US Army Corps

Corps 2015; Corps 2012

ps ® U.S.AF

Portland District

MIDDLE FORK WILLAMETTE SUB-BASIN RESEARCH, MONITORING AND EVALUATION PLAN

🖌 Lookout Point Dam

State Park

Dexter Dam¹

Google

Key uncertainty: Conditions which promote PSM and the ability to effectively manage PSM below levels supporting a sustainable population above MFW dams?

Risk Attitudes

Multi-User

High Conflict Issues

Variable Uncertainty

THANK YOU!

NEXT STEPS

- Fund SDM team
- Schedule workshop with stakeholders to establish objectives and alternatives, and obtain information (summer 2019)

Portland District

